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The evolution equation is derived for a weakly nonlinear coastal Kelvin wave 
propagating in slowly varying topography in an f-plane ocean. For weak transverse 
variations in the topography, the wave evolution is governed by a perturbed 
Korteweg-de Vries equation. In the absence of transverse variation, wave dispersion 
vanishes and the evolution equation reduces to a nonlinear advection equation with 
variable coefficients. As a general property of these equations, the total mass flux 
associated with the Kelvin wave is not conserved ; residual mass must be generated. 
It is shown by an asymptotic analysis that this residual mass field is in balance with 
a mean geostrophic current long after the passage of the Kelvin wave. This result is 
verified using a numerical model. The physical mechanism evolved in the generation 
of the residual mass can be understood in terms of potential vorticity conservation. 

1. Introduction 
Kelvin waves are known to play an important role in the oceanic adjustment near 

boundaries and the equator (Gill 1982). The classical Kelvin wave is a trapped wave 
solution in a rotating, semi-infinite, shallow-water ocean of uniform depth H 
bounded by a vertical wall. It is a linear, non-dispersive wave propagating along the 
boundary with the phase speed C = (gH);  in the direction of rotation. Since such a 
classical solution neglects the effects due to nonlinearity and varying mean 
backgrounds (such as topography and mean currents), it has little application to real 
oceans. 

During the past two decades, studies of Kelvin waves have attempted to include 
these effects. Smith (1972) and Grimshaw (1977) demonstrated that offshore 
topography can introduce a topographic dispersion to Kelvin waves. For a weakly 
nonlinear wave, this dispersion may balance the nonlinearity so that the evolution 
of the Kelvin wave is governed by the KortewegAe Vries (KdV) equation. On the 
other hand, Miles (1972, 1973) considered the effects of variation in alongshore 
topography, Earth’s curvature and coastline geometry. He showed that alongshore- 
varying topography can cause substantial changes in the amplitude and phase speed 
of Kelvin waves. If the topography varies slowly along the coastline, wave energy is 
approximately conserved. The Kelvin wave evolves according to Green’s law ; that 
is the vertical displacement of the free surface associated with the Kelvin wave is 
inversely proportional to the square root of the depth of the fluid. However, if the 
topography varies abruptly as a step function, a Kelvin wave can be diffracted at the 
step. Miles (1973) showed that the wave diffraction can be calculated by solving a 
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singular integral equation whose solution is intractable without further approxi- 
mation. More recently, Killworth (1989a, b )  generalized the problem by considering 
the interaction between a Kelvin wave and a smooth ridge of width comparable to 
the deformation radius extending uniformly away from the coastline. Although no 
analytical solutions were found, it was shown that simple bounds may be placed on 
the amplitude of the transmitted Kelvin wave using calculus of variations method. 

Studies of water waves propagating in a channel of variable depth in a non- 
rotating system can be dated back to Boussinesq who in 1872 recognized that, when 
a long surface wave propagates in a channel of gradually varying depth, a slow 
change in wave amplitude must occur to satisfy the principle of conservation of 
energy. However, he also realized that, even allowing for this wave amplitude 
modulation, the mass flux associated with the wave was not conserved. This seeming 
paradox has been the subject of many investigations (Johnson 1973; Grimshaw 
1983; Miles 1979; Knickerbocker & Newell 1980,1985). It is now understood that the 
non-conservation of mass flux is caused by wave reflection which is neglected in the 
wave evolution equation - the perturbed Kortewegde Vries (PKdV) equation. 
Studies by Miles (1979) and Knickerbocker & Newell (1985) have demonstrated that 
the total mass flux is resolved into a primary (KdV) flux and a residual flux that is 
proportional to the mean displacement of the primary wave. The reflected waves are 
small-amplitude (relative to the primary wave), non-dispersive, long waves which 
travel in the direction opposite to the primary wave and stretch over a distance much 
longer than the primary wavelength. These waves, in turn, carry a mass flux of equal 
order to the primary mass flux. 

Recently, Long & Chang (1990) have applied these concepts to a rotating ocean. 
The problem they considered was an equatorially trapped Kelvin wave propagating 
in a slowly varying thermocline which was assumed to be balanced by the wind 
forcing. Using a multiple scale analysis, it was shown that the evolution of wave 
amplitude riding with the equatorial Kelvin wave was governed by a PKdV 
equation. This equation, just like the PKdV equation derived in a non-rotating fluid, 
cannot conserve mass. Thus, the residual mass is generated in the wake of the Kelvin 
wave. Although they did not analytically solve for the residual mass flux, numerical 
simulations indicated that the residual mass was carried westward by the long, non- 
dispersive Rossby waves. I n  the present study, we consider the problem of a coastal 
Kelvin wave propagating in a rotating fluid with depth variations in both the 
offshore and alongshore directions. The topography here is assumed to be a linear 
superposition of a slowly varying alongshore oscillation and a small-amplitude 
offshore topography. The fundamental difference between this problem and the 
previous one is that the long, non-dispersive Rossby waves which existed in the 
equatorial 8-plane are absent here to the lowest order. Since these waves are crucial 
in transporting the residual mass, one may wonder what happens to  the mass flux 
associated with an f-plane Kelvin wave as it propagates in a slowly varying 
topography. I n  particular, does an f-plane Kelvin wave pulse conserve its mass flux 1 
If not, how is the residual mass adjusted on an f-plane ocean ? 

I n  $ 2  we show that the nonlinear evolution of a Kelvin wave in the presence of a 
slowly varying two-dimensional topography is governed by a PKdV equation similar 
to the one derived by Long & Chang (1990). Thus, the primary mass flux associated 
with the Kelvin wave is not conserved. We then show in $ 3  that the residual mass 
flux is generated from the interaction between the Kelvin wave and the topography. 
By explicitly solving the high-order perturbation equations, we further show that 
the asymptotic solutions represent a wave-adjustment process similar to the classical 
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geostrophic adjustment. In  $4 the numerical simulations of the full shallow-water 
equations are given in support of the analytical solutions. Finally, in $5 we discuss 
the results from the point of view of potential vorticity conservation. 

2. Derivation of the perturbed KdV equation 
The perturbed KdV equation was first derived by Johnson (1973) and Kakutani 

(1971) to describe the appropriate nonlinear evolution of a long surface wave 
propagating in a non-rotating channel of variable depth. We show in this section that 
the time evolution of a weakly nonlinear f-plane Kelvin wave in the presence of a 
slowly varying two-dimensional topography is described by a similar type of 
equation. The perturbation techniques used here are essentially the same as those 
described by Long & Chang (1990) in the study of an equatorial Kelvin wave in the 
presence of a varying thermocline. Therefore, in the interests of brevity we shall omit 
the detailed analyses and quote merely the important solutions. 

Consider a semi-infinite inviscid reduced-gravity shallow-water ocean, rotating 
with angular velocity if about a vertical axis, bounded by a wall in the west. The 
equations of motion are given by 

a, + q u  a, u+ a, u)  -fV = - 9‘ a, h ; (1) 
3, v + E ( u ~ ,  V+V 3, V) + fu = -9’ a, h ;  (2) 

a, h+L(a,u+a, w )  +ua,k+ v a,h+~[a,(hu) +a,(hw)] = 0, (3) 

where the small parameter E measures the amplitude of the perturbation field, his the 
layer thickness at rest, which includes the variation of topography; f is the Coriolis 
parameter and is a constant under the f-plane assumption, g’ is the reduced gravity 
and h is the perturbation of the layer thickness. A no-flux boundary condition a t  the 
western boundary implies that u must vanish at x = 0. 

To allow the nonlinearity and wave dispersion to enter a t  the same order, we 
assume that the topography k has the form 

Ji = H(Y)+€M(X) .  (4) 

a , h + ( ~ ~ / ~ + ~ ~ ~ a , ~ + a , ~ ) + ~ f ~ ~ ~ + 2 / ~ ~ ~ , ~ + ~ [ a , ( h ~ ) + a , ( h ~ ) ~  = 0, (5) 

Substitution of (4) into (3) gives 

where C = (g’H(y))k is the local shallow-water wave speed in the absence of offshore 
topography. Assuming that the alongshore lengthscale of the topography is much 
greater than the scale of the waves, we can introduce a slow variable and a fast 
variable : 

fast-time variable? s = (1 + E ~ ~ + E W ~ +  ...) t ;  
fast-space variable 7 = y ;  
slow-space variable Y = ~ y ,  

where q, (i = 1,2,  ...) is a set of parameters which needs to be determined. Since C 
is a function of the slow variable Y ,  we can introduce the following phase coordinates : 

t Alternatively, we can choose s, = t as a fast-time variable, and then replace C-‘ in the phase 
coordinates, (6), by C;’ = C-I( 1 + e%oI + eu2 + . . .). This choice of the variables eventually leads to 
the same solutions. 
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Substituting these new coordinates into (i) ,  (2) and (3), and expanding u, w and h in 
power series of €4, we find a Kelvin wave solution at  O(so): 

uo = 0;  (7)  

wo =A(u;Y)exp(-f /Cx);  (8) 

h, = -C/g’A(a;Y)exp(-f/Cx), (9) 

where A(a;  Y) is an arbitrary function a t  this order. Note that solutions depend on 
u only, indicating that the Kelvin wave always propagates towards the equator 
along the western boundary. 

At next order (O($ ) ) ,  the forcing terms on the right-hand side of the perturbation 
equations do not contain nonlinear terms. The non-secularity condition is applied 
merely to determine the phase-speed correction w1 a t  this order: 

w1 = f g’/C3 JOm Y exp ( - 2f/C 2) dx. 

Proceeding to O(E) ,  the governing perturbation equations a t  O(s) contain both 
dispersion and nonlinearity. To identify the secularities at this order, it is necessary 
to solve for the particular solutions a t  O(& which are independent of 7. This can be 
achieved by expanding the O(&) solutions in terms of a set of complete eigenmodes 
in a semi-infinite f-plane which consists of a continuum of Poincart! modes and a 
coastal Kelvin mode. Collecting all the secularities (terms that are independent of 7) 
in the second-order forcing, the non-secularity condition then gives the perturbed 
KdV equation for wave amplitude A in the form 

(11)  2CCy A + C2ay A - A  a,A +M A = 0, 

and the phase-speed correction in the form 

(12) w2 = -w;+- [ Y s i n k x e ~ p ( - ~ l c ) d z ] ~ d k ,  f :i!J: ( k 2 + f 2 / C 2 )  

where M measures the strength of dispersion caused by offshore topography Y and 
is given by 

As a check on the asymptotic solution, consider a special case in which Y = Yo = 
constant, then 

d2 us 
%=-- 8C4 . 

g’ y o .  M = O ;  wl=- 
2c2 ’ 

This result is consistent with the expansion of the total shallow-water wave speed in 
the absence of offshore topography, i.e. 

I n  deriving the perturbed KdV equation, the WKB assumption that the scale of 
the Kelvin wave pulse is much smaller than the scale of the topography implies that 
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the Kelvin wave described by ( 1  1 )  will undergo an adiabatic change in amplitude to 
(approximately) conserve energy. If we substitute (7),  (8) and (9) into the energy 
equation, it is readily shown that the energy density for a Kelvin wave to O(E)  is 
proportional to 

E = J:v:Hdz = --HA2 C 

2f 

and the energy flux is equal to 

F = J:g’vohoHdr = CE. 

On the other hand, multiplying (1 1) by A and then integrating with respect to o from 
go to 00 yields 

&Jvy C4A2do = 0. 

This means that the energy flux associated with a Kelvin wave pulse is indeed 
conserved to O(s). In the linear regime, conservation of wave energy (equation (14)) 
implies that the longshore velocity component and height field of the Kelvin wave 
varies as the layer depth H(Y) to the power of - 1 and -+, respectively. This result 
is consistent with Miles’ (1973) finding. In comparison with the classical Green’s law 
found for shallow-water waves impinging on a beach (see, for example, Newell 1985), 
the power appearing in the analogue of the Green’s law is increased by a factor of 
two. 

Apart from the energy constraint, a wave pulse is also subject to its mass 
constraint. It is widely known that the perturbed KdV equation (1 1) does not satisfy 
the mass conservation law to the same order as energy conservation (see, for 
example, Newell 1985; Grimshaw 1983). To illustrate this point, we consider a simple 
case in which wave dispersion is absent. The solution to ( l l ) ,  in the linear regime, is 
governed by Green’s law, i.e. 

A = C(o)H-l(Y). (15) 

The mass transport associated with a Kelvin wave pulse is then given by 

Equation (16) shows that the mass transport associated with a Kelvin wave varies 
along topography, indicating that the mass is not conserved. 

The non-conservation of mass implies that a certain portion of the mass associated 
with the Kelvin wave pulse must be left behind. A detailed analysis of what happens 
in the wake of a Kelvin wave pulse will be given in the next section. Here, without 
solving for the detailed solutions, we estimate how much residual mass is generated 
by the topography. Imagine a small-amplitude Kelvin wave pulse propagating 
through monotonically varying topography from a initially uniform layer depth H ,  
to a new constant depth H,, as shown in figure 1. Since no interaction between the 
topography and Kelvin wave can occur after the wave has reached H,,  residual mass 
cannot be generated beyond that point. On the other hand, the total mass flux is 
equal to the sum of the residual mass flux and the mass flux associated with the 
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I 

FIGURE 1. A sketch of the physical system being considered. A Kelvin wave pulse propagates 
through a montonically varying topography from an initial uniform layer depth H ,  = H(Y, )  to a 
new constant depth H ,  = H(Y,).  The scale of the wave is O(L) ,  whereas the scale of the topography 
is O(L/E) .  

Kelvin wave. By mass conservation, the total mass flux must be equal to the mass 
flux associated with the Kelvin wave pulse after it has reached the new constant 
depth H,. Consequently, the residual mass flux a t  any given location Y is equal to the 
difference between the mass flux associated with the Kelvin wave a t  H ( Y )  and H,, 
namely, 

l r n  
MRes = f J g o  Gda[(g‘H(Y)) i -  (g’H,);]. 

Therefore, the total amount of residual mass over the topography (between H I  and 
H,) can be obtained by letting H ( y )  = H I  in (17). Evidently, this residual mass flux 
is comparable in magnitude with the primary mass flux. The apparent inconsistency 
between the conservation of mass and of energy associated with a Kelvin wave pulse 
can be explained qualitatively using scaling arguments as shown in Newel1 (1985) 
and Long & Chang (1990). 

3. Adjustment of residual mass 
The solutions obtained in the previous section indicate that a substantial portion 

of mass associated with the Kelvin wave is lost as it passes through a slowly varying 
topography. In this section we explicitly solve for O ( E )  perturbation solutions in 
order to understand how this residual mass is adjusted on anf-plane. 

For simplicity, we neglect the offshore variation in the topography, because it does 
not fundamentally change the characteristic of the problem. To do that, we set Y = 0 
in (5) and expand the solution in a power series in E .  The lowest-order solutions are 
still given by (7),  (8) and (9) and the first-order ( O ( e ) )  perturbation equations read 

a,u-fv+g’a,h= 0;  (18) 

(19) 

(20) 

3, + f ~  +g’ a7 h = - (9’ a, ho + v0 a7 v0) ; 

a,h+ [C2(Y)Ig’1 ( a , U + a p )  = -r(l/g‘)ay(C2vo)+a7(hO~0)1. 

To obtain solutions to the above equations, we use the method described by Gill 
(1982). First, we combine (18), (19) and (20) to derive two equations governing the 
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offshore velocity component of u and the layer-averaged perturbed potential 
vorticity q, 

a2ulat2 +f2U - c 2 v U  - 9’ aq/aq = 3fv0 avo/av (21) 

and aqiat = f/g’ ac2/ayvo, (22) 

where q = a,(Hv) -a,(Hu) - f h, which is an invariant of the system in the absence of 
topography. Equation (22) indicates that q is generated from the interaction between 
the primary Kelvin wave and topography. Eliminating q from (21) and (22), using 
the initial condition u = v = h = q = 0, at t = 0, we have 

In contrast to the classical Rossby adjustment problem considered by Gill (1976, 
1982), the offshore velocity component is not forced by the initial potential vorticity 
perturbation, but rather by the potential vorticity anomalies induced by Kelvin 
wavetopography interaction and by the nonlinear self-interaction of the Kelvin 
wave. At this stage, it is convenient to introduce the phase coordinates defined in (6) 
and (23): 

azu a2u ac av 
4-+fZu-C2- = 2f-vo+3fvo4 

aa a7 a x 2  ay a7 

Here, without losing generality, we have assumed that the Kelvin wave pulse starts 
at a position where the fluid depth is uniform, so that the interaction between the 
Kelvin wave and topography is zero at t = 0. The proper boundary conditions to (24) 
are that u has to vanish at x = 0 and to be bounded as x + 00. 

The solution to (24), in general, consists of two parts: a homogeneous part uh and 
a forced part uf. The homogeneous part of the solution represents Poincark waves. 
Since we are not interested in the details of Poincarb waves, the homogeneous 
solutions to (23) can be simply written as uh = uh(a, 7 ;  Y ,  x). However, it is important 
to point out that to avoid a trivial solution, uh must be a function of both a and 7.  

The forced part of the solution, subject to the boundary condition u = 0, at x = 
0, is given by 

Note that ue tends to follow the motion of the primary Kelvin wave, and thus it 
cannot leave a permanent signature behind the Kelvin wave. 

Once u has been determined, we find it convenient to obtain v and h by defining 
two Riemann invariants 

S = v-g‘/Ch and R = v+g‘/Ch, (26) 

where S and R satisfy the following equations: 

as 
a7 

2-=-fu 

aR 
uh-C--2-Aexp 2-=-f auh ac 

aa ax ay 
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Since the last term on the right-hand side of (27) depends on a only, it must vanish 
to ensure that the equation is non-secular. This condition gives us an evolution 
equation for the wave amplitude A in the form of 

a aA 
S ( C 2 A ) - A Z =  0, 

which is precisely the PKdV equation (1 1) in the absence of wave dispersion. After 
eliminating the secularity in (27), solutions for v and h can be easily obtained, using 
(26), from (27) and (28): 

(30) v = v h - 5 ~ [ u o A d o e x p (  lac g -$x)+f[B(r; Y ,x )+@(a;  Y,x)]; 

(31) 
C 

Y,x)-@(a;  Y,x)], 

where @ and 0 are arbitrary functions which need to be determined ; vh and h" are 
the homogeneous part of the solution in v and h and are given by 

vh = -~ f [c . " , "  +mi + capx [ ( U " ) " - ~ O ' ] } ,  
hh = - C/4g' (f[m - (Uh)'] + C a/ax [m + m]}, 

(32) 
(33) 

respectively, where (...)' = (. . .) d7 and = lo (. . .) da. lo 
To determine @ and 0, we substitute (30) and (31) to (18) and then use the condition 
that v and h are bounded as x + co . Finally, we obtain the perturbation solution v and 
h a t  O(c): 

-f+ [ gy - A  g] [ z + 7 (exp (-5x) - I)] exp (-5x) 

2 g ' c a ~  1 aCaA aa x2exp( -gx)+hh.  

(34) 

(35) 

Here we have also used the condition that, a t  any given y, SF v dx must vanish after 
all the wave transients have propagated away. Solutions (34) and (35) consist of a 
geostrophically balanced current (the first terms on the right in (34) and (35)) and a 
transient wave solution which contains both a Kelvin wave and Poincar6 wave. The 
physical process represented by these solutions is a geostrophic adjustment, i.e. 
gravity waves adjust the residual mass field to generate a geostrophic circulation. As 
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a result, with increasing time, the wave transients will radiate away and the solution 
will approach a geostrophically balanced circulation : 

Figure 2 shows an example of the geostrophic residual circulation generated by a 
Kelvin wave pulse passing through a hyperbolic tangent topography, using 
parameters typical of the numerical solutions given in $4. Here v and h are calculated 
according to (36) and (37). The resulting circulation exhibits a relatively strong, 
narrow current against the boundary and a weak, broad returning flow in the 
interior. This picture is in good qualitative agreement with the numerical solution to 
be introduced in the next section. 

Solutions (36) and (37) represent stationary circulation over the topography. Since 
these solutions show no sign of propagation in the offshore direction, it implies that 
topographic waves do not enter the solution a t  this order. This result is consistent 
with the assumption we made about the variation of the topography. Since the 
topography is assumed to be slowly varying, the topographic p-effect given by 
d(fH) dy is on the order of e. The change of potential vorticity induced by the wave 
disturbances v d(  f /H)/dy is then on the order of e2, which cannot balance the time 
rate of change of the wave potential vorticity (see (22)). Consequently, the topographic 
waves cannot occur a t  this order. However, the topographic waves will be important 
if the scale of topography becomes comparable to or smaller than the scale of the 
Kelvin wave. We shall verify this argument in terms of numerical experiments in the 
next section. 

Finally, as a check on our solutions, again consider the case in which (15) is valid. 
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The total amount of residual mass can be calculated by integrating (37) over the 
topography, which gives 

MRes = 6I:I:hdxdy = - [ ( g ' H , ) ~ - ( g ' H , ) ~ ]  G(a)da as u+m, (38) 

where H ,  = H ( Y , )  and H ,  = H(Y2) are the uniform layer depths shown in figure 1 .  
This result is consistent with the estimation given in the previous section. 

lo 1 

f 

4. Numerical solutions 
I n  this section we verify the analytical results obtained in the previous sections by 

numerically integrating the full shallow-water equations (1)-(3). Following Arakawa 
& Lamb (1981), we first rewrite the momentum equations (1) and (2) in a flux form 
in terms of potential vorticity q = ( f + [ ) / ( L + h )  and the energy density E = 
i(uz + w2) + g'(L+ h ) .  Then we discretize the governing equations on the staggered ' C ' 
grid, using the second-order centred difference in space and the leap-frog scheme in 
time. The choice of the ' C '  grid is based on the fact that it best simulates the 
geostrophic adjustment mechanism (Arakawa & Lamb 1977). The nonlinear terms in 
the equations are uniquely arranged so that the finite-difference analogues of ( l ) ,  (2) 
and (3) satisfy conservation of energy and potential enstrophy constraints. It has 
been shown by Arakawa & Lamb (1981) that the potential enstrophy and energy 
conserving scheme has superiority over other schemes in dealing with flow over 
steep-topography problems. To remove the computational mode associated with the 
leap-frog scheme, a weak Robert smooth with a coefficient of 0.005 is used every time 
step. Otherwise, there is no explicit diffusion or dissipation in the model. The 
resolution of the model is 0.1" in both x and y. The model parameters are chosen to 
be the following : the mean depth of the reduced-gravity ocean H ,  has a value 1225 m 
and the reduced gravity g' has a value 4 x m ss2. This gives a shallow-water 
wave speed C, of 7 m s-l. The model basin has a latitudinal width of 12" and a zonal 
length of 70". The topography in the model is given by 

E(y) = H ,  l + -  tanh - { ;[ ( y y c ) - l l } ~  (39) 

where S is the amplitude of the alongshore variation in the layer depth, L, is the 
alongshore lengthscale of the topography, yc is the central location of the slope. For 
the initial conditions, we use the lowest-order asymptotic solution (7)-(9) with A ( z )  
being a Gaussian, namely 

(40a) u(x ,  y, t = 0) = 0;  

where A is an amplitude parameter, yo is the initial location of the Kelvin wave, A 
is the alongshore lengthscale of the wave and L, is the local radius of deformation, 
i.e. L,  = f /C.  

First, we present detailed results from one run with 8 = 0.3, yc = 35", L, = lo", 
and A = 500, yo = 64", A = 2". This choice of the parameters approximately satisfies 
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FIQURE 3. Contour plots of the numerical solution for v with 8 = 0.3, A = 2 O ,  L, = 10' and 
d = 500 at six different times. (a)  t = 2; ( b )  t = 4 ;  ( c )  t = 6;  ( d )  t = 8;  (e) t = 10; (f) t = 12 days. 

the WKB condition, so that one anticipates that the evolution of the wave should 
follow the theoretical predictions obtained in the previous sections. In  particular, 
since we have chosen a very small amplitude, the numerical solutions should remain 
in the linear regime and the evolution the Kelvin wave should obey Green's law. 

In figures 3 and 4 contour plots of the solutions for v and h are shown a t  six 
different times. Consistent with the theoretical prediction we see that a residual 
circulation gradually develops in the wake of the wave pulse. At t = 12 days the 
Kelvin wave pulse has completely travelled over the topography ; the recirculation 
pattern left behind looks very similar to asymptotic solutions shown in figure 2.  To 
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FIQURE 4. Same as figure 3 
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but showing the solution for h. 

have a quantitative comparison between the numerical and the asymptotic solutions, 
we computed the relative error of the residual mass 

where hn denotes the residual height field obtained numerically a t  t = 12 days and h, 
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is the asymptotic solution as t +m.  The domain-averaged absolute errors of 
normalized height field h and alongshore velocity componcnt v arc 

respectively. These figures indicate that the numerical solutions overall agree well 
with the asymptotic solutions. 

The maximum errors between the numerical and asymptotic solutions occurred 
along the centre of the topography at y = 35O, as indicated in figure 5 ,  which shows 
the zonally averaged absolute errors of h and v as a function of latitude. These large 
errors are caused by a slow propagation of the numerica.1 solution of the residual 
circulation in the offshore direction. Figure 6 shows the transverse structure of the 
residual circulation along the centre of the topography (y = 35"). The analytical 
solutions agree very well with the numerical solutions at t = 7 days (when the wave 
pulse has just passed the centre of the topography (y = 35")) .  At t = 12 days, the 
numerical solutions exhibit a slight shift of v and h towards the east. This offshore 
propagation may be attributed to the topographic Rossby waves whose propagation 
speed depends on the slope of the topography. In  this experiment, we have chosen 
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FIGURE 1 1 .  Same as figure 7 but for narrow-topography experiments: (a) v with L, = 2"; 
(b )  h with L,  = 2"; (c) v with L, = 0.5"; ( d )  h with L, = 0.5". 

a very small slope in order to compare with our analytic solutions, so that the 
transverse propagation is negligible small. The estimated offshore propagation speed 
of the centroid of the height field h along y = 35" is about 4.713 x m/s which is 
two orders of magnitude smaller than the phase speed of the Kelvin wave (7 m/s in 
this case). This feature, however, will be changed when the alongshore lengthscale of 
the topography becomes comparable to or smaller than the scale of the wave, as we 
will see in the following experiments. 

Figure 7 shows the wave amplitude evolution of 'u and h along x = 0. The model 
outputs along the boundary at times t = 2,3,  . . ., 12 days are displayed in figures 7 (a )  
and 7 ( b )  respectively. Superimposed are the results obtained from Green's law which 
predicts that v and h vary as the layer depth H ( y )  to the power of - 1  and -4, 
respectively. As one can see, both of the figures show an excellent agreement between 
the numerical and asymptotic calculations. 

In the next two experiments, we reduced the lengthscale of the topography to 
L, = 2" and L, = 0.5". Figures 8 and 9 are 'snapshots' of h taken at  t = 4 , 6 , 8 ,  10 and 
12 days for the two experiments. In contrast to thc analytical solutions shown in 
figures 8 (f ) and 9 (f ), residual circulation obtained from the numerical model rapidly 
expands eastward after its generation by the Kelvin wave pulse. This feature is 
further illustrated in figure 10 which shows the time evolution of v and h along y = 
35'. Evidently, the eastward propagation of the residual circulation is controlled by 
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FIGURE 12. Same as figure 4 except that in this case the amplitude of the wave is increased by 
a factor of 20 with A = 25. 

the slope of the topography. The bigger the slope is, the faster is the transverse 
propagation. This result suggests that the topographic Rossby waves are important 
in the adjustment of the residual mass when the lengthscale of the topography 
becomes comparable to or smaller than the scale of the wave pulse. The WKB 
solutions obtained in $3  break down because the lengthscale of the topography is 
comparable to the scale of the wave. In  this case topographic waves may have effects 
on both the primary Kelvin wave and residual mass adjustment as explained in $3. 
However, it is interesting to note that even in this case the amplitude evolution of 
the Kelvin wave agrees well with the Green law, as shown in figure 11. It is also 
interesting to note from figure 11 that a secondary structure - a shelf which extends 
between the primary wave and the residual mass over the topography - is created. 



Coastal Kelvin waves in slowly varying topography 32 1 

1.6 1.6 
1.4 1.4 

* 1.2 1.2 

3 1.0 1 .o 
G 
5 
$ OLi 

0.8 

0.6 

0.4 0.4 

0.2 0.2 

0 0 

-0.2 -0.2 

0.8 

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 
Latitude (deg.) Latitude (deg.) 

FIGURE 13. Evolution of the Kelvin wave amplitude in h along the boundary x = 0 in the 
varying topography for (a) A = 25 and (b )  A = 10. 

1 .o 
0.9 
0.8 
0.7 

* 0.6 
0.5 
0.4 

2 
M .- 0.3 

0.2 
0.1 

0 

Analytical solution 

1 .o 
0.9 

0.8 
0.7 

0.6 
0.5 

0.4 

0.3 
0.2 
0.1 

0 
I n i  -0.1 -"., 

0 2 4 6 8 1 0 1 2  
Longitude (deg.) 

Analytical solution 

1 
2 4 6 8 1 0 1 2  

Longitude (deg.) 

FIGURE 14. Transverse profiles of h along the centre of the topography for (a) A = 25 and 
(b )  A = 10. 

This shelf seems to be trapped near the boundary, as shown in figures 8 and 9. No 
explanation about this secondary structure is given here. 

Finally, we examine the effects due to finite wave amplitude. We present the 
results from two numerical experiments with d = 25 and d = 10. Since the offshore 
topographic variation is not included, the Kelvin wave remains non-dispersive. This 
means that the almost inevitable consequence of nonlinearity is shock waves. In 
figure 12 we present contour plots of h at six different times for A = 25. In 
comparison with the small-amplitude experiment shown in figure 4, the development 
of the residual circulation behind the leading-order Kelvin wave appears to be similar 
except for the superimposed small-scale wave disturbances. The main difference is 
associated with the primary Kelvin wave pulse. At  about t = 6 days, one can see that 
the wave front is considerably steepened and small-scale wave disturbances start to 
develop at the edge of the wave front. Thus, energy is no longer concentrated within 
a radius of deformation of the coast : instead there appears to be an energetic zone 
trailing from the head of the wave front, this trailing streamer consisting of very 
small-scale wave disturbances and becoming more extensive with time. Furthermore, 
a 'lie-back' angle between the streamer and the normal to the coast can be clearly 
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identified in figure 12. Anderson (1981) has argued that the trailing streamer is 
attributable to the Poinear6 waves. Because these waves can only travel at  a 
maximum speed determined by the local depth of the fluid (C = (g'H);), they cannot 
keep up with the nonlinear Kelvin wave front and thus fall behind. Recently, 
Melville, Tomasson & Renouard (1980) have shown both analytically and 
numerically that a small increase in the Kelvin wave speed due to nonlinearity may 
lead to a direct resonance with the linear Poinear6 waves. Therefore, energy will be 
transferred continuously from the Kelvin wave to the Poinear6 waves, resulting in 
the curvature of the wave front. The amplitude evolution of h along the boundary 
shown in figure 13 for both A = 25 and A = 10 indicates that Green's law, as 
expected, fails to describe the wave amplitude evolution after breaking occurs. This 
means that the wave energy is no longer conserved. Figure 13 further indicates that 
the amplitude of the wave front overshoots the value predicted by the linear theory. 
However, this result cannot be taken seriously because the numerical scheme 
adopted here cannot handle the shock waves accurately. Nevertheless, the feature 
associated with the generation of residual circulation seems to be robust even for 
large-amplitude Kelvin waves. The transverse structure of the residual circulation 
shown in figure 14 again indicates a good agreement between the theoretical and 
numerical solution except in the region far off the coast where weak wave-like 
disturbances can be seen in the numerical solutions. 

5. Discussion 
One of the most powerful dynamic constraints on the fluid motion in an inviscid 

rotating fluid is that the potential vorticity Q must be conserved following the fluid 
particles, namely 

where 

aQ aQ aQ -+u-+v- = 0, 
at ax ay 

This dynamic constraint may be used to understand the physical mechanism 
associated with the generation of residual mass as a Kelvin wave pulse passes 
through a slowly varying topography. 

Imagine that a small-amplitude (O(s) )  Kelvin wave has just passed by a location 
y, the pressure pulse associated with the wave pushes the fluid particles through a 
small distance of O ( E ) .  This O ( E )  displacement of fluid particles will then cause an 
O(s2) change in the fluid depth H ,  because the slowly varying topography allows only 
an O(a)  change in depth over a distance of O(1).  For a small-amplitude disturbance 
(O(s) ) ,  the potential vorticity Q can be expanded in a power series in B: 

where Q' - ("!?-%)+& (i = 0, I ) ,  ,-- ax ay H 

is the perturbed potential vorticity at O(s) and 0 ( e 2 ) ,  and u,, v,, h, (i = 0 , l )  are our 
perturbation solutions. Since the total potential vorticity is conserved following the 
fluid particles, an O(s2) change in ambient potential vorticity induced by an O(s) 
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displacement of fluid particles must be compensated by the same amount of change 
in the perturbed potential vorticity Q'. Substituting the Kelvin wave solution (7)-(9) 
into the perturbed potential vorticity Q', it  is easy to verify that the perturbed 
potential vorticity associated with the Kelvin wave is identically equal to zero, 
namely, Q; = 0. This result indicates that Kelvin waves carry no perturbed potential 
vorticity. Since Q; is equal to zero, it follows immediately from (42) that the potential 
vorticity anomalies can only be generated at O(e2). Once these potential vorticity 
anomalies are created, they cannot be carried away by either Kelvin waves or 
Poincark waves. Instead they will remain behind to establish a geostrophic 
equilibrium by radiating Poincark waves and a Kelvin wave. Consequently, the 
residual mass is created over the topography. This process is very similar to the 
classical geostrophic adjustment considered by Rossby (1937, 1938), Blumen (1972) 
and Gill (1976, 1982). 

Of course, the adjustment process will be altered if vorticity waves (namely 
Rossby waves) must be taken into account, because these waves can carry potential 
vorticity anomalies as they propagate in space. This is the case when the lengthscale 
of the topography is comparable to or smaller than the scale of the Kelvin wave, as 
demonstrated by the numerical experiments in $4. The westward-propagating 
equatorial Rossby waves also play an important role in the adjustment of potential 
vorticity anomalies generated by an equatorial Kelvin wave propagating in a slowly 
varying thermocline (Long & Chang 1990). The residual mass in this case was found 
to be reflected by westward-propagating Rossby waves. This mechanism of 
generation of residual circulation will also operate in the situation when a Kelvin 
wave propagates along a lateral ocean boundary on the spherical Earth, except that 
in this case the change in ambient potential vorticity is produced by the change in 
Coriolis parameter rather than in the depth of the fluid. However, the adjustment 
process may be complicated by the equatorially trapped waves as the Kelvin wave 
approaches the equator. This problem is now under investigation. 

I wish to  express my gratitude to Professor R. Grimshaw for making critical 
comments that improved the paper considerably. He also pointed out a different 
approach to solve the problem (see the footnote in $2). I am grateful to Dr B. Long 
for helpful discussion during the course of this work. I also thank the anonymous 
referee for valuable comments about this paper. The work was supported by 
NOAA/JISAO grant NA90RAH000073. This is a contribution to JISAO. Con- 
tribution number 113 of JISAO/University of Washington. 
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